Phase Portraits of Quadratic Systems with Finite Multiplicity Three and a Degenerate Critical Point at Infinity
نویسندگان
چکیده
منابع مشابه
Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four
In this article we consider the class QSL4 of all real quadratic differential systems dx dt = p(x, y), dy dt = q(x, y) with gcd(p, q) = 1, having invariant lines of total multiplicity four and a finite set of singularities at infinity. We first prove that all the systems in this class are integrable having integrating factors which are Darboux functions and we determine their first integrals. W...
متن کاملIntegrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity
In this article we prove that all real quadratic differential systems dx dt = p(x, y), dy dt = q(x, y) with gcd(p, q) = 1, having invariant lines of total multiplicity at least five and a finite set of singularities at infinity, are Darboux integrable having integrating factors whose inverses are polynomials over R. We also classify these systems under two equivalence relations: 1) topological ...
متن کاملFive Definitions of Critical Point at Infinity
This survey paper discusses five equivalent ways of defining a “critical point at infinity” for a complex polynomial of two variables.
متن کاملGlobal phase Portraits of quadratic Polynomial differential Systems with a Semi-Elemental Triple Node
Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert’s 16th problem [Hilbert, 1900, Hilbert, 1902], are still open for this family. In this article we make a global study of the familyQTN ...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1997
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181071903